

Thomas Jefferson National Accelerator Facility - Office of Science Education http://education.jlab.org/

# A Different Way of Measuring

# HOW CAN YOU MEASURE SOMETHING THAT YOU CAN'T SEE?

Follow the instructor's directions to measure the size of a dime.



Area of 1 dime  $\approx$ 



Thomas Jefferson National Accelerator Facility - Office of Science Education http://education.jlab.org/

# A Different Way of Measuring

# HOW CAN YOU MEASURE SOMETHING THAT YOU CAN'T SEE?

 $\bigcirc$ О Ο Ο Ο О Ο  $0 \,\mathrm{cm}$ Ο 00Ο Ο Ο  $\bigcirc$ -10 cm 25 Number of dots in the box = Number of dots on dimes = Area of the square =  $100 \text{ cm}^2$ Area covered by dimes = ??? 7 25 *x cm<sup>2</sup>* 100 cm<sup>2</sup> Fraction of dots Fraction of square hitting dimes covered by dimes  $100 \text{ cm}^2 * \frac{7}{25} = x \text{ cm}^2 = \text{area of } 10 \text{ dimes} = 28 \text{ cm}^2$ 2.8 cm<sup>2</sup> Area of 1 dime  $\approx$ 

Follow the instructor's directions to measure the size of a dime.

Thomas Jefferson National Accelerator Facility - Office of Science Education http://education.jlab.org/

# **A Different Way of Measuring**

This is an activity in which students determine the area of a dime using a method similar to one used by nuclear physicists to determine the cross-sectional area of a nucleus.

## **Objectives:**

In this activity students will:

- use creative problem-solving to determine the area of a dime
- multiply fractions
- compare two sets of data
- record data

#### **Questions to Ask:**

- 1. How does this experiment and method of calculation measure the size of a dime?
- 2. Why is it important that the pencil marks are not in any particular pattern?
- 3. How could you make this experiment more accurate?

## Virginia State Standards of Learning

## Math 6.2 Number and Number Sense

• by comparing areas and 'hits' within them

### Math 6.6 Computation and Estimation

• by solving problems involving multiplication of fractions

### Math 6.10 Measurement

• by determining the area of a dime using a nonstandard method of measuring

# A Different Way of Measuring Teacher Overview and Materials List

#### **Background:**

When working with atoms, scientists sometimes have to invent new ways of doing simple things. For instance, scientists can't use a ruler to measure the size of an atom's nucleus. This activity shows how ratios can be used to calculate the area covered by an object.

### Minimum Materials Needed for Each Student Group:

Student data sheet

Dime sheet

### Notes:

• A real dime has an area of ~2.54 cm<sup>2</sup>

#### **Detailed Directions:**

- 1. Have each student place a number of dots (50 is a good number) within the large square on their data sheet. The dots should be as small as possible and should be randomly scattered over the area of the square.
- 2. Record the number of dots used.
- 3. Place the dime sheet under the data sheet and align the squares.
- 4. Circle every dot that landed on a dime and circle half of the dots that partially landed on a dime.
- 5. Record the number of dots circled.
- 6. Find the fraction of dots that are circled. This is related to the area covered by the dimes. For example, if 20% of your dots are circled, you can assume that 20% of the square is covered by dimes.
- 7. Use the fraction of dots that are circled to calculate the fraction of the square covered by dimes.
- 8. Since there are 10 dimes on the dime sheet, you must divide the area covered by dimes by 10 to find the area of one dime.